首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   12篇
  国内免费   1篇
  2022年   2篇
  2021年   13篇
  2020年   6篇
  2019年   8篇
  2016年   1篇
  2015年   2篇
  2014年   10篇
  2013年   11篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   7篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   11篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1989年   2篇
  1988年   2篇
排序方式: 共有111条查询结果,搜索用时 46 毫秒
21.
Chain damage is a new phenomenon that occurs when a reactive jet impacts and penetrates multi-spaced plates.The reactive jet produces mechanical perforations on the spaced plates by its kinetic energy(KE),and then results in unusual chain rupturing effects and excessive structural damage on the spaced plates by its deflagration reaction.In the present study,the chain damage behavior is initially demonstrated by experiments.The reactive liners,composed of 26 wt%Al and 74 wt%PTFE,are fabricated through a pressing and sintering process.Three reactive liner thicknesses of 0.08 CD,0.10 CD and 0.12 CD(charge diameter)are chosen to carry out the chain damage experiments.The results show a chain rupturing phenomenon caused by reactive jet.The constant reaction delay time and the different penetration velocities of reactive jets from liners with different thicknesses result in the variation of the deflagration position,which consequently determines the number of ruptured plates behind the armor.Then,the finite-element code AUTODYN-3D has been used to simulate the kinetic energy only-induced rupturing effects on plates,based on the mechanism of behind armor debris(BAD).The significant discrepancies between simulations and experiments indicate that one enhanced damage mechanism,the behind armor blast(BAB),has acted on the ruptured plates.Finally,a theoretical model is used to consider the BAB-induced enhancement,and the analysis shows that the rupturing area on aluminum plates depends strongly upon the KE only-induced pre-perforations,the mass of reactive materials,and the thickness of plates.  相似文献   
22.
Reactive Materials (RMs), a new material with structural and energy release characteristics under shock-induced chemical reactions, are promising in extensive applications in national defense and military fields. They can increase the lethality of warheads due to their dual functionality. This paper focuses on the energy release characteristics of RM casings prepared by alloy melting and casting process under explosive loading. Explosion experiments of RM and conventional 2A12 aluminum alloy casings were conducted in free field to capture the explosive fireballs, temperature distribution, peak overpressure of the air shock wave and the fracture morphology of fragments of reactive material (RM) warhead casings by using high-speed camera, infrared thermal imager temperature and peak overpressure testing and scanning electron microscope. Results showed that an increase of both the fireball temperature and air shock wave were observed in all RM casings compared to conventional 2A12 aluminum ally casings. The RM casings can improve the peak overpressure of the air shock wave under explosion loading, though the results are different with different charge ratios. According to the energy release characteristics of the RM, increasing the thickness of RM casings will increase the peak overpressure of the near-field air shock wave, while reducing the thickness will increase the peak overpressure of the far-field air shock wave.  相似文献   
23.
In order to examine the possibility to improve its camouflage properties standard cotton fabric with camouflage print was impregnated with poly(vinyl butyral), PVB and fullerene-like nanoparticles of tungsten disulfide, PVB/IF-WS2. FTIR analysis excluded any possible chemical interaction of IF-WS2 with PVB and the fabric. The camouflage behavior of the impregnated fabric has been examined firstly in the VIS part of the spectrum. Diffuse reflection, specular gloss and color coordinates were measured for three different shades (black, brown and dark green). Thermal imaging was applied to examine the camouflage abilities of this impregnation in IR part of the spectrum. The obtained results show that PVB/IF-WS2 impregnation system induced enhacement of the materials camouflage properties, i.e. that IF-WS2 have a positive effect on spectrophotometric characteristics of the fabric.  相似文献   
24.
Heterocyclic skeleton (Azoles) and different energetic groups containing high performing explosives are highly emerged in recent years to meet the challenging requirements of energetic materials in both military and civilian applications with improved performance. For this purpose tetrazole (Azole) is identified as an attractive heterocyclic backbone with energetic functional groups nitro (-NO2), nitrato (-ONO2), nitrimino (-NNO2), and nitramino (–NH–NO2) to replace the traditionally used high performing explosives. The tetrazole based compounds having these energetic functional groups demonstrated advanced energetic performance (detonation velocity and pressure), densities, and heat of formation (HOF) and became a potential replacement of traditional energetic compounds such as RDX. This review presents a summary of the recently reported nitro-tetrazole energetic compounds containing poly-nitro, di/mono-nitro, nitrato/nitramino/nitrimino, bridged/bis/di tetrazole and nitro functional groups, describing their preparation methods, advance energetic properties, and further applications as high-performing explosives, especially those reported in the last decade. This review aims to provide a fresh concept for designing nitro-tetrazole based high performing explosives together with major challenges and perspectives.  相似文献   
25.
分析民用建筑外墙保温材料火灾危险性和在建工程施工现场消防管理存在的问题,讨论了我国建筑外墙保温立法存在的缺失,并提出了针对性的防火对策。  相似文献   
26.
《防务技术》2019,15(3):241-253
This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve – a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in on-going developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.  相似文献   
27.
针对停产雷达装备维修器材持续保障过程中存在的筹措断供问题,提出基于改进风险矩阵法和层次分析法相结合的风险评估方法。首先建立保障风险评估指标体系,然后采用改进的风险矩阵进行风险评估,利用采用层次分析法解决存在递归层次时风险因素的评估问题,最后得出装备器材持续保障风险的综合量化值,为提出保障风险规避策略提供数据依据。利用某型雷达器材保障风险评估案例进行数据分析,验证了该方法的有效性。  相似文献   
28.
采用离子注入和电子束等物理方法,对PTFE、KPVC、PMMA等聚合物材料进行了抗静电改性实验。实验结果表明,合理选择改性工艺,可以得到优良的抗静电材料。本文对离子注入和电子束的抗静电改性机理进行了分析,提出了选择最佳改性工艺条件的原则。  相似文献   
29.
本文对矩形腔内相变材料的紧密接触熔化过程进行了分析。矩形容器的上下壁面保持各自的温度对相变材料加热,且相变材料可以有不同的高宽比。应用Nusselt液体边界层理论,本文求得了传热过程的熔化规律与液体边界层厚度,并讨论了熔化温差与高宽比对熔化过程的影响,最后给出结论。  相似文献   
30.
Among the intrinsic properties of some materials, e.g., foams, porous materials, and granular materials, are their ability to mitigate shock waves. This paper investigated shock wave mitigation by a sandwich panel with a granular core. Numerical simulations and experimental tests were performed using Autodyn hydro-code software and a shock tube, respectively. The smoothed particle hydrodynamics (SPH) method was used to model granular materials. Sawdust and pumice, whose properties were determined by several compression tests, were used as granular materials in the sandwich panel core. These granular materials possess many mechanisms, including compacting (e.g., sawdust) and crushing (e.g., pumice) that mitigate shock/blast wave. The results indicated the ineffectiveness of using a core with low thickness, yet it was demonstrated to be effective with high thickness. Low-thickness pumice yielded better results for wave mitigation. The use of these materials with a core with appropriate core reduces up to 88% of the shock wave. The results of the experiments and numerical simulations were compared, suggesting a good agreement between the two. This indicates the accuracy of simulation and the ability of the SPH method to modeling granular material under shock loading. The effects of grain size and the coefficient of friction between grains have also been investigated using simulation, implying that increasing the grain size and coefficient of friction between grains both reduce overpressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号